15 research outputs found

    Effects of a neuromuscular controller on a powered ankle exoskeleton during human walking

    Get PDF
    Wearable devices to assist abnormal gaits require controllers that interact with the user in an intuitive and unobtrusive manner. To design such a controller, we investigated a bio-inspired walking controller for orthoses and prostheses. We present (i) a Simulink neuromuscular control library derived from a computational model of reflexive neuromuscular control of human gait with a central pattern generator (CPG) extension, (ii) an ankle reflex controller for the Achilles exoskeleton derived from the library, and (iii) the mechanics and energetics of healthy subjects walking with an actuated ankle orthosis using the proposed controller. As this controller was designed to mimic human reflex patterns during locomotion, we hypothesize that walking with this controller would lead to lower energetic costs, compared to walking with the added mass of the device only, and allow for walking at different speeds without explicit control. Preliminary results suggest that the neuromuscular controller does not disturb walking dynamics in both slow and normal walking cases and can also reduce the net metabolic cost compared to transparent mode of the device. Reductions in tibialis anterior and soleus activity were observed, suggesting the controller could be suitable, in future work, for augmenting or replacing normal walking functions. We also investigated the impedance patterns generated by the neuromuscular controller. The validity of the equivalent variable impedance controller, particularly in stance phase, can facilitate serving subject-specific features by linking impedance measurement and neuromuscular controller

    Neuromuscular Controller Embedded in a Powered Ankle Exoskeleton:Effects on Gait, Clinical Features and Subjective Perspective of Incomplete Spinal Cord Injured Subjects

    Get PDF
    Powered exoskeletons are among the emerging technologies claiming to assist functional ambulation. The potential to adapt robotic assistance based on specific motor abilities of incomplete spinal cord injury (iSCI) subjects, is crucial to optimize Human-Robot Interaction (HRI). Achilles, an autonomous wearable robot able to assist ankle during walking, was developed for iSCI subjects and utilizes a NeuroMuscular Controller (NMC). NMC can be used to adapt robotic assistance based on specific residual functional abilities of subjects. The main aim of this pilot study was to analyze the effects of the NMC-controlled Achilles, used as an assistive device, on chronic iSCI participants' performance, by assessing gait speed during 10-session training of robot-aided walking. Secondary aims were to assess training impact on participants' motion, clinical and functional features and to evaluate subjective perspective in terms of attitude towards technology, workload, usability and satisfaction. Results showed that 5 training sessions were necessary to significantly improve robot-aided gait speed on short paths and consequently to optimize HRI. Moreover, the training allowed participants who initially were not able to walk for 6 minutes, to improve gait endurance during Achilles-aided walking and to reduce perceived fatigue. Improvements were obtained also in gait speed during free walking, thus suggesting a potential rehabilitative impact, even if Achilles-aided walking was not faster than free walking. Participants' subjective evaluations indicated a positive experience

    Active stabilization of a stiff quadruped robot using local feedback

    No full text
    Animal locomotion exhibits all the features of complex non linear systems such as multi-stability, critical fluctuation, limit cycle behavior and chaos. Studying these aspects on real robots has been proved difficult and therefore results mostly rely on the use of computer simulation. Simple control approaches - based on phase oscillators - have been proposed and exhibit several of these features. In this work, we compare two types of controllers: (a) an open loop control approach based on phase oscillators and (b) the Tegotae-based closed loop extension of this controller. The first controller has been shown to exhibit synchronization features between the body and the controller when applied to a quadruped robot with compliant leg structures. In this contribution, we apply both controllers to the locomotion of a stiff quadruped structure. We show that the Tegotae-controller exhibits self-organizing behavior, such as spontaneous gait transition and critical fluctuation. Moreover, it exhibits features such as the ability to stabilize both asymmetric and symmetric morphological changes, despite the lack of compliance in the leg

    Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects

    No full text
    Powered exoskeletons (EXOs) have emerged as potential devices for Spinal Cord Injury (SCI) to support the intervention of physical therapists during therapy (rehabilitation EXOs) as well as to assist lower limb motion during the daily life (assistive EXOs). Although the ankle is considered a key joint for gait restoration after SCI, very few ankle exoskeletons were developed and tested in incomplete SCI (iSCI) population. Among those, the Achilles ankle exoskeleton is the only one embedding a Controller inspired by the neuromuscular system (NeuroMuscular Controller, NMC). In a previous study we demonstrated that a period dedicated to train iSCI subjects in using the Achilles EXO as an assistive aid, improved robot-aided walking speed and surprisingly also generated a positive trend in free walking speed on long and short distances thus suggesting a possible unexpected rehabilitation effect. To further investigate this result, a case-control longitudinal study was conducted in the present work. The aim of this study was to test the hypothesis that Achilles-aided training could improve performance of free walking of chronic iSCI people more than conventional intensity-matched gait rehabilitation. Before and after conventional and robot-aided rehabilitation a number of variables were analyzed, including spatiotemporal parameters, joint kinematics, ground reaction forces, muscle force, spasticity and its related symptoms, balance and personal experience about the training. Results showed that only the NMC-controlled Achilles training allowed participants to significantly walk faster, with a longer step length and a reduced gait cycle time. A slight force and spasticity improvements were also experienced. In terms of subjects' personal experience, Achilles training was perceived more interesting and less physically demanding than conventional rehabilitation

    An adaptive neuromuscular controller for assistive lower-limb exoskeletons: A preliminary study on subjects with spinal cord injury

    Get PDF
    Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limbmuscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection), can be decomposed into relevant control modules (e.g., only knee or hip control), and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects (N = 7, four with complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects-from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged formost of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined settings for multiple walking speeds or adjustments for subjects of differing anthropometry and walking ability, NMC enabled SCI subjects to walk at several speeds, including near healthy speeds, in a healthy-like manner. These preliminary results are promising for future implementation of neuromuscular controllers on wearable prototypes for real-world walking conditions.Biomechatronics & Human-Machine Contro

    Combining a 3D Reflex Based Neuromuscular Model with a State Estimator Based on Central Pattern Generators

    No full text
    A neuromuscular model (NMC) presented by H. Geyer and extended by S. Song shows very interesting similarities with real human locomotion. The model uses a combination of reflex loops to generate stable locomotion and is able to cope with external disturbances and adapt to different conditions. However, to our knowledge no works exist on the capability of the model to handle sensory noise. In this paper, we present a method for designing Central Pattern Generators (CPG) as feedback predictors, which can be used to handle large amount of sensory noise. We show that the whole system (NMC, +, CPG) is able to cope with a very large amount of noise, much larger than what the original system (NMC) could handle

    Benefits and Potential of a Neuromuscular Controller for Exoskeleton-Assisted Walking

    No full text
    Controlling wearable exoskeletons to interact with people suffering from locomotion disabilities due to lesions of the central nervous system is a complex challenge since it entails fulfillment of many concurrent objectives: versatility in different applications (assistance and rehabilitation), user-specific adaptation to residual motor functions, compliance with different gait features (e.g. personal walking patterns and especially speed changes), smoothness of human-robot interaction, natural and intuitive exoskeleton control, acceptability and usability of the worn system. A novel bio-inspired modular controller for lower limb exoskeletons was developed by the Authors, which delivers assistive joint torques by using a reflex-based neuromuscular model. This paper presents an overview of previous and ongoing findings in testing this controller with the aim to highlight its benefits and potential in complying with user needs and with different applications

    Symbitron Exoskeleton: Design, control, and evaluation of a modular exoskeleton for incomplete and complete spinal cord injured individuals

    Get PDF
    In this paper, we present the design, control, and preliminary evaluation of the Symbitron exoskeleton, a lower limb modular exoskeleton developed for people with a spinal cord injury. The mechanical and electrical configuration and the controller can be personalized to accommodate differences in impairments among individuals with spinal cord injuries (SCI). In hardware, this personalization is accomplished by a modular approach that allows the reconfiguration of a lower-limb exoskeleton with ultimately eight powered series actuated (SEA) joints and high fidelity torque control. For SCI individuals with an incomplete lesion and sufficient hip control, we applied a trajectory-free neuromuscular control (NMC) strategy and used the exoskeleton in the ankle-knee configuration. For complete SCI individuals, we used a combination of a NMC and an impedance based trajectory tracking strategy with the exoskeleton in the ankle-knee-hip configuration. Results of a preliminary evaluation of the developed hardware and software showed that SCI individuals with an incomplete lesion could naturally vary their walking speed and step length and walked faster compared to walking without the device. SCI individuals with a complete lesion, who could not walk without support, were able to walk with the device and with the support of crutches that included a push-button for step initiationOur results demonstrate that an exoskeleton with modular hardware and control allows SCI individuals with limited or no lower limb function to receive tailored support and regain mobility.EMSD EEMCS Project engineers1Biomechatronics & Human-Machine Contro
    corecore